
Uncl assif fied 0 DIC FILE: CGPV. I
SEC.U,'T Y rZL A~ iFV'7ATION~ OF Tm IS P. /I-E %no Pat a ,frprij

PAGE [READ INSTRUCTIONS
REPORT DOCUMENTATION PAEBEFORE COMPLETING FORMI

1REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'$ CATALOG NUMBER

0 none

4 TITLE 'an.' tubw,:e) 5. T ,'PE C V REPCRT & PERIOD COVERED

1%Achieving Speedups for a Shared Memory Model Technical Report
Language on an SI11D Parallel Computer 6. PERFORMING ORG REPORT NUMBER

j87-09-03
7. AL.T.,OR'al 5. CONTRACT OR GRANT NUMBER(@)

Ray Greenlaw and Larry Snyder N00014-86-K-0264

9. PERFORMING OR3ANIZATiON NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, 'ASK

University of Washington AREA & WORK UNIT NUMBERS

Department of Computer Science
Seattle, Washington 98195

11. CONTROLLING O FFI CE AgE AND ARDRESS 12. REPORT DATE

office of Navaf Ise archi September 1987
Information Sy'stems Program 73. NUMBER OF PAGES

Arlington, VA-22217 20
14. MONITORING AGENCY NAME 8 ADDRESS'If different from Contro~llng Oflie&) IS. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASS IFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

f7. DISTRIBUTION STATEMENT (of rte abstract entered In Blo'k 20. If dI'erent from Report)

IS. SUPPLEMENTARY NOTES JL2518

19 KEY WORDS (Continue on reverse side If necesaty and Identify by block number)

APL, mesh connected computer, performance, parallel processing,
sequential algorithms

20 ABSTRACT (Continue on reverse side If necessery and Identify by block number)

The potential for speeding up a shared memory model sequential programming
language, APL, by using an idealized non-shared memory parallel computer is
investigated. We simulated the running of APL's dyadic, reduction, and subscrip.
operators on a 4-connected mesh SIMD parallel computer. The simulation results
indicate that these operations can be sped up significantly using parallelism.
These findings support the thesis that parallelism can speedup a majority of
"typical" APL programs a-nd not just those programs that are especially suited to
parallelization. The sequential APL language requires no sophisticated compila-

DD , AN1 1473 ') N OF 1 NJOV '55 IS OBSOLETE

XC~' y CL ASSIFICATION ' F lP (',F 16N . 'e

8 8 ~~~

tion techniques like Paraphrase and PFC, because the operators in
APL are inherently parallel. We fell that exploiting this property
of APL is interesting.

Accession For

NT 1S GIFA&I
DTIC 7I L

iVy

W4 Aftinb, ityCodes
vjA-.11 and/or

It Dlat special

L__
SECrURITY CLASSIFICATrION OF Tmis PArFWfren rlare Fnrered'

..

.0

•S

Achieving Speedups
for a Shared Memory Model Language

on an SIMD Parallel Computer

Ray Greenlaw and Larry Snyder

Department of Computer Science
University of Washington

Technical Report 87-09-03
September 1987

/ Abstract -

The potential for speeding up a shared memory model sequential programming Ian-
guage, APL, by using an idealized non-shared memory parallel computer is investigated. S

,-WVesimulated the running of APL's dyadic, reduction, and subscriot operators on a 4-
, ?- connected mesh SIMD parallel computer. The simulation results \indicate that these

operations can be sped up significantly using parallelism. These fiPdings support the
_- thesis that parallelism can speedup a majority of "typical"VAPL ,programs and not

just those programs that are especially suited to parallelization. The sequential APL
language requires no sophisticated compilation techniques like Paraphase and PFC, be-
cause the operators in APL are inherently parallel. W,- that exploiting this property '
of APL is interesting.

,%-1

This re'earch has been funded by the Office of Naval Research Contract No. N00014-86-K-0264 and the National
Science Foundation Grant No. DCR 8416878.

Authors' address: Department of Computer Science FR-35, University of Washington, Seattle, WA 98195.

"." "

'5 ~ , ' _2

1 Introduction

The main objective of this research is to determine how much speedup can be achieved by imple-
menting a sequential shared memory model programming language on a non-shared memory model
parallel computer with P processors. The sequential language is APL- A Programming Language.
originally defined by Iverson [ive62]. Many APL operators have arrays as data and exhibit a great
deal of inherent parallelism. Budd [Bud84] showed an APL compiler designed for a vector pro-
tessor in which most operations are performed in parallel. The inherent parallelism in APL is a
central motivation for its choice. Our goal is to obtain speedups for any "typical" APL program
and not just those especially suited to parallelization. Therefore, to simplify our simulation it is
sufficient to focus on APL operators that studies have shown comprise the majority of average APL
programs. One such study is described by Saal and Weis [SW75].

In fact, the 80-20 rule, which says that 80% of the operations used come from a subset consisting
of only 20% of the total operators, was observed to hold for APL [SW75]. APL primitive scalar
functions, the reduction operator, the subscript operator and user function calls were found to
comprise the majority of a wide variety of APL programs. We simulated the first three of these
operations on a mesh connected computer [Bea68]. The findings indicate that appreciable speedups
can be obtained for all three of these operations. These results suggest that a large portion of an
average APL program can be sped up significantly on a mesh connected computer. In addition, if
the remaining part of the APL program could be run without degrading the performance, then the
overall running time of the program could be decreased by a significant percentage.

Part of our concern with this research is to make existing sequential programs more efficient. In
addition, we are concerned with utilizing parallel machines in an effective manner. Parallel comput-
ers are currently being manufactured and some of the difficulties in programming these machines
have been investigated. In Nelson's thesis [Nel87] several parallel programming paradigms are
identified. Although these paradigms are not conceptually much more complicated than sequen-
tial programming paradigms, actual machine specific implementations applying these techniques
to particular problems are complex. The need for additional tools to aid in the design of parallel
programs has been recognized and there are several existing parallel programming environments,
such as Poker [Sny84] and Simple Simon [CBHH87], that provide some of these tools.

However, parallel programming is not yet as well understood as sequential programming. Our
research indicates that existing representative APL programs could be compiled to run more ef-
ficiently on existing parallel machines without having to reprogram them into parallel solutions.
Assuming the existence of such a compiler, new or existing sequential programs could be compiled
and run on the parallel machine to see if the speedups obtained are near optimal. If the converted
sequential program ran efficiently, then it would not need to be reprogrammed for the parallel"%

machine.
Although this motivation, to run existing sequential programs in parallel and to simplify writing

new parallel programs through the use of a sequential language, is similar to the work of Kuck
[KKLW80I and Kennedy (AKPW83] in FORTRAN restructuring, the details differ in one significant
way: no sophisticated compiler techniques are required to recognize the parallelism we exploit
in APL. The parallelism is all found within the semantics of a single operator; to exploit this
parallelism we simply substitute a parallel implementation of the operator for the sequential one.
Since scalar operators are elementwise independent over all elements of an array, thcir parallel
speedup should be expected to be near linear (e.g. summation). Since the reduction operator is

2

an accumlation operator, its parallel implementation requires combining all elements, which on the
mesh should yield a speedup factor on the order of the mesh dimension. A parallel implementation
of general subscripting might be expected to yield speedups on the order of the number of items in
the subscript vector stored per processor times the dimension of the mesh.

The remainder of the paper is outlined as follows. In Section 2 the possible speedups obtainable
for a hypothetical APL program are analyzed. We assume the program has certain operator
usage percentages and make assumptions about the parallel speedups for these operators. Our
case analysis using Amdahl's Law [Amd] suggests caution at being overly optimistic about the
potential speedups obtainable for complete programs unless all segments of the program parallelize
well. In Section 3 the assumptions used in conducting our simulation, the algorithms used for
implementing the primitive scalar, reduction, and subscript operators, and the general methodology
of our simulation are described. In Section 4 the timings we obtained from the simulation are
presented. In Section 5 we interpret our data and compare it to data obtained for a VAX running
APL and in Section 6 conclusions and further research questions are presented.

2 Analysis of Possible Speedups Using Parallelism
M

In this section we examine some of the possible speedups attainable in implementing APL on
a non-shared memory parallel machine. For a non-shared memory model parallel computer one
of the fundamental problems is how to communicate data efficiently between processors. Local
communication is usually not too expensive, but if our APL implementation requires a great deal
of arbitrary communication, then the implementation may become too inefficient to be useful.
Many APL operators have arguments that are arrays and under certain data allocation schemes
they adapt well to parallelism [Sch87]. For example, since the arguments to the dyadic operators
must conform in size, it is easy to assign to each processor data elements that are to be operated on
pairwise. In such cases, theoretically, near optimal speedup over the sequential case are obtainable
because there is no need to perform any global communication. In general, for operations like
subscripting that require arbitrary communication, we can not hope for such complete speedups.

In what follows we conduct a three case analysis using Amdhal's Law [Amd] in order to
examine the possible speedups that might be achieved under various implementations of APL
on a non-shared memory parallel machine. We fix the percentage of time required for several
important APL operators and vary assumptions about the amount of speedup achievable for each
these operators in a parallel implementation. No specific non-shared memory machine model is
assumed but just that the parallel machine has P processors.

In [SW751 the study conducted on APL programs indicated the operator usage percentages
depicted in Table 1. Table 2 shows the assumptions made about the amount of speedups achievable
using P processors. In all three cases presented we assume that using P processors gives an optimal
speedup of P for the scalar primitive operators. We will vary the assumptions about the subscripting
operations as follows: in case 1 we assume that a slowdown by a factor of 2 occurs, in case 2 we
assume no speedup, and in case 3 we suppose a speedup by a factor of log P. We assume that all

remaining operations will require about the same amount of time in cases I and 2, and that in case
3 a speedup by a factor of log P is achieved.

Suppose a "typical" APL program requires time T to execute on a serial machine, what do the
operator usage percentages in Table 1 and the assumptions in Table 2 imply about the parallel
implementation's running time for the same program?

L=

1W3

II Operation Percentage of Use [SW75]
scalar primitives 73%

subscripting 18%

reduction 2.6%
all others combined 6.4%

Table 1: APL operation usage percentages.

Operation Case 1 Case 2 Case 3

scalar primitives P P P
subscripting .5 1 log P
all others combined 1 1 log P

Table 2: Speedup factors assumed for case analysis using P processors.

1. CASE 1 For the portion of the execution time attributed to the scalar primitives, a speedup
of P is achieved. For the portion of the program due to the subscript operation, a slowdown
of by a factor of two occurs. The last part of the program's execution time, which we assume
is due to all other operations, remains the same. Therefore, the following formula describes
the overall run time of the parallel implementation:

.73T :'
+ .45T

(1)

This shows that as the number of processors P gets very large the running time of the program
approaches .45T. Thus, asymptotically the best overall speedup possible is about a factor of
two.

2. CASE 2 For the portion of the execution time attributed to scalar primitives, a speedup by a
factor of P is achieved. For the remaining part of the program there is no change. Therefore,
the following equation describes the overall run time:

.73T
+ .27T (2)

This shows that as the number of processors grows large the running time of the program
approaches .27T. Thus, at best a factor of four speedup is obtainable. Notice, this is only
slightly better than the speedup achieved in case 1.

3. CASE 3 For the portion of the program due to scalar primitives a speedup of P is obtained.

For the remaining part of the program a speedup of log P is achieved. This is due to
the more efficient implementations of the subscript operator and all other operators. The

following equation describes the overall run time:

4 '.I

Number of PEs I Case I I Case 2 Case 3

100 75.5 50.5 25.5
1,000 75.05 50.05 16.71

10.000 75.005 50.005 12.255
100,000 75.0005 50.0005 10.0005

Table 3: Parallel running times for a program, which took 100 seconds sequentially, assuming the
equations presented for the three cases(logs are base 10).

.73T .27T (
,+ F og (3)

P og P

Equation 3 shows that with additional processors we continue to get marginal increases in
speed. Note, that the assumptions in case 3 implied more than a constant factor speedup for all
Cparts" of the program, and therefore; more than a constant factor speedup for the overall program
was obtained.

Table 3 depicts the parallel running times for cases 1 through 3 on an APL program assumed
to have taken 100 seconds to run sequentially. Notice that for cases 1 and 2 the speedups achieved
by adding another order of magnitude of processors are almost negligible. In case 1 a speedup by a
factor of about four thirds is obtained and in case 2 a speedup by a factor of two. In case 3 notice F
that additional processors help reduce the running time of the program significantly. In addition,
for case 3 adding more processors achieves more than a constant factor speedup.

The conclusions that we draw below are based on "average" APL programs. Obviously, there is
no one program that is representative of all APL programs, however, by an average APL program
we mean one that is as representative of APL programs as possible. Some APL programs may be
particularly suited to a parallel implementation and others may not be parallelizable at all. The
conclusions are also based on the assumptions given in Table 2. Clearly, these are simplifying
assumptions but they illustrate the limiting cases.

Our analysis illustrates the point that all significant parts of typical programs need to be sped
up if an appreciable overall speedup is to be achieved. In particular, if one significant portion of a
program can not be sped up at all using parallelism, then this will serve as a lower bound on the
possible speedup for the entire program. For example, if there is no hope of speeding up 20% of a
program, then the parallel implementation's run time can be at best a factor of 5 better than the
serial implementation's regardless of the number of processors that are used. This suggests that
we bias our implementation towards the operation for which it is most difficult to achieve speedups
even if it is at the expense of less efficient implementations for the remaining operators.

The primitive scalar operations of APL seem to adapt well to parallelism as do some of the
other operators listed with them. This is, of course, assuming a parallel implementation in which
global communication is kept at a minimum. However, the subscripting operations seem more
difficult to parallelize due to communication costs. There is no economical way of storing the data
to be operated on so that all possible subscripting operations can be sped up on a non-shared
memory parallel computer. This is because the subscript operator can require any permutation
of the data be returned. In the next section we focus on how to implement the APL subscript

5

- # --. y

2B

Figure 1: 4 x 4, 4-connected SIMD mesh (control PE is not shown).

operator efficiently on a non-shared memory model in a way that still allows some speedups for
the other APL operators. If we succeed at this task for typical programs, then we can claim that
speedups for average APL programs using parallelism are achievable.

3 A Simulation of Several Major APL Operators on a Mesh

The non-shared memory parallel computer used is the 4-connected SIMD (single instruction stream,
multiple data stream) mesh [Bea68] with toroidal connections and a control processor. The inter-
connection structure for a 4 x 4 mesh is shown in Figure 1. Each processor is numbered according
to its position in the mesh and the control processor (not shown) is numbered 0.

The machine is composed of the control processor that broadcasts instructions to the processors
in the mesh. The control processor can broadcast an instruction to all PEs in the mesh in unit
time. Although this is somewhat unrealistic assumption for a large mesh, it is acceptable because
operations requiring arbitrary communication on an n x n mesh will require time at least 0(n)

anyway. Since the control processor broadcasts instructions, there is a single instruction stream.
Each processor can either execute the instruction on its own data or wait for that step. Thus, there
is a multiple data stream. Each processor has its own local symbol table. Thus, there is non-shared
memory. The control processor has in its symbol table all scalar values. All APL arrays are stored
in the mesh in row major order; thus, multidimensional arrays are "strung out" in a convenient
way so that they can be treated similarly to one dimensional arrays. For the most part, we assume
that we are dealing with one dimensional arrays although the results generalize to arrays of higher
dimensions. Schaad has considered other allocations [Sch87].

For an n x n mesh, communication between any two PEs (processing elements or processors)
can be done in time 0(n). This will serve as a lower bound on the amount of possible speedup
achievable for specific instances of APL operations requiring arbitrary communication. Certain

I 6

iI

instances of subscripting are examples of such operations. Notice there are other bounded degree
networks in which arbitrary communication requires less time. In general though, their intercon-
nectiort structures and message routing algorithms are more complicated than the mesh's [Upf84l.
Besides, if we can demonstrate effective speedups on the mesh then this provides us with strong
evidence that such speedups are also achievable on some of these other networks.

In the next three subsections we focus on algorithms for implementing the APL dyadic, reduc-
tion, and subscript operators on the 4-connected mesh. For analyzing the implementation of the
subscript operator it useful to isolate the computational aspects of the problem by considering a
shared memory model implementation.

3.1 Dyadic Operator

We choose to implement the dyadic operator because the Saal and Weis study indicated the primi-
tive scalar operations are frequently used and the dyadic operator is representative of this group of
operators, moreover, the actual parallel implementation of the operator can serve as a benchmark
of the types of speedups expected from our simulation. The simulation's running time for the
dyadic operator can serve as a benchmark because theoretically it seems reasonable to hope for a
near perfect speedup in implementing it for large data sizes and large mesh sizes. This is assuming
that the elements of the pairwise operation can be stored in the same PE.

Given that we choose to store our data in row major order (see [Sch87] for a study conducted on
the impacts of different storage allocation schemes and how they affect the parallel running times
of APT, programs implemented on the n-cube) the obvious efficient way to compute the dyadic
operator is as follows:

Algorithm 3.1 Dyadic Algorithm

1. The control processor broadcasts to all PEs that the next instruction is dyadic and sends a
message containing the destination, the operands and the operator type.

2. In parallel all PEs search for the operands in their local symbol tables and perform the
required operation.

3. Step 2 is repeated as many times as necessary, when each PE has more than one data element.

4. The result is stored in the appropriate destination. Note, the destination of the result is
always in the same PE where the result was computed in.

As an example on a 10 x 10 mesh, consider how the following APL dyadic instruction would
be implemented; in the example A and B are initialized to the first 256 integers.

Example 3.1 A - t256
B - t256
C - A+B

Initially the control procesor broadcats itat the dyadic plus operatiUl, is to be performed on
A and B with the result to be assigned to C. Each PE initially contains either 2 or 3 elements
of A and the same number of elements of B. For example, PE 1 contains elements 1,101 and 201

7

Datasize 11 Vax 8500 100 PEs 256 PEs 1024 PEsJ

256 10 3 4 -

512 30 7 5 -

1024 50 15 11 2.6
1536 60 22 14 2.8

2048 80 31 17 3.1

2560 100 45 22 3.5

3072 120 57 30 4.0

3584 137 74 34 4.4
4096 150 87 41 5.0

Table 4: Timings in milliseconds for the APL dyadic operation.

of arrays A and B. In parallel all PEs find the corresponding pairs of elements of A and B they
contain and perform the appropriate operation on these elements. Notice, that the result is also
stored in the same PE and this adheres to the row major order storage convention for arrays. Thus,
Algorithm 3.1 does not require any communication between PEs under the chosen data allocation
scheme.

We analyze the expected speedup over the sequential case for the Dyadic Algorithm 3.1.
Suppose the following dyadic instruction is to be executed:

Example 3.2 C -- A + B

where JAl = B I = 1. For the parallel case an n x n mesh is assumed. Sequentially the operation
takes 0(1) time because each addition needs to be performed separately. In the parallel case there
would be at most [1-] elements per PE, so the operation takes O(I,.) time. Theoretically then,
we would expect a perfect speedup for this implementation. The simulation results obtained for

Algorithm 3.1 are shown in Table 4. They support this analysis.

3.2 Reduction Operator 14

The reduction operator is an interesting one to implement because a certain amount of global
communication is required. The following algorithm describes the way that we choose to implement
the reduction operator.

Algorithm 3.2 Reduction Algorithm

1. The control processor broadcasts to all PEs that the next instruction is reduction and sends

a message containing the destination, the operand and the operator type.

2. In parallel all PEs search for the occurrences of the operand in their local symbol tables and
perform the required operation on all elements they contain. (For operations that are not

associative and communative, e.g. subtraction and division, care must be taken concerning
the order in which the operations are performed on the actual array elements).

8
- 4)-d %

3. These partial results are all forwarded to the leftmost column of the mesh.

4. The PEs in the leftmost column aggregate the partial results while the other PEs remain idle.

5. The results are sent to PEI where they are "totaled" for the final solution to the reduction.

As an example on a 10 x 10 mesh, consider how the following APL reduction instruction would
be implemented; in the example .4 is initialized to the first 2.56 integers.

Example 3.3 A - 256
C -+/A

Initially the control processor broadcasts that the plus reduction operation is to be performed on
.4 with the result to be assigned to C. Each PE initially contains either 2 or 3 elements of 4. Each
PE sums its elements. For example, PEI sums elements 1.101 and 201 of A. Using general data
movement techniques on the mesh [U1184] these partial sums are then sent to the leftmost column
of processors. In this case the ten results obtained for each row are summed up in the leftmost
column. These ten new results are sent to PE1 where the final result of the reduction is computed.
Notice, Algorithm 3.2 requires any given PE to receive at most one message at each step. We
analyze the expected speedup over the sequential case for the Reduction Algorithm 3.2. Suppose
the following reduction instruction is to be performed:

Example 3.4 C - +/A

where JAI = 1. For the parallel case an n x n mesh is assumed. Sequentially we would expect the
operation to take 0(1) time because each addition needs to be performed separately. In the parallel
case there would be at most r 1 elements stored in each PE. Therefore, the initial summing takes

0(1-) time. Step 3 in Algorithm 3.2 requires time 0(n) because n values need to be shifted to
the leftmost column with one value coming from each PE. Step 4 requires time 0(n) because the
PEs in the leftmost column have 0(n) elements to sum up. Step 5 requires time 0(n) since 0(n)
values must be sent to PE1 and then summed up in PEI. Therefore. the overall running time of
Algorithm 3.2 is 0(n) when I < n3 and 0(-' -) for I > n3. Therefore, when I > n3 we get a
perfect speedup asymptotically.

Note, in the analysis the constant implied by the 0 notation is small. Furthermore, we have

two steps in which communication between PEs is required and this is independent of the number
of elements per PE. In the analysis we have char-ed one unit of time for each communication
step. This analysis shows that Algorithm 3.2 yields appreciable speed up over the sequential
case whenever n3 < I and runs in about the same time when n and I differ by a constant. The
simulation results obtained for Algorithm 3.2 are shown in Table 5.

3.3 Subscript Operator i%

APL has a more general subscript operator than most other programming languages [GR76]. For
example, in most languages access is to only one element of an array at a time. The expression A[i]
is used to retrieve the i' h element of array A. The index i to A must have a scalar value. In APL,
the index into an array can be a vector. For example, A[V] retrieves the elements from 4 whose

indices match those specified by the vector V. The only restrictions to the indices appearing in V

is that they be in the "domain" of A, i.e. legitimate subscripts. Consider the following example:

9

Datasize Vax 8500 100 PEs 256 PEs 1024 PEs

256 1 1.1 1.2
512 20 1.6 1.3 -

1024 30 2.0 1.4 3.3
1536 60 2.8 1.5 3.6
2048 80 4.6 2.1 3.3
2560 90 6.6 2.3 3.5
3072 100 8.2 2.8 3.3
3584 120 13.4 3.0 3.8
4096 140 15.0 3.8 3.4

Table 5: Timings in milliseconds for the APL reduction operation where local computation is
performed first in each PE.

Example 3.5 A - 'abcde'
V 1 44
A[V]

add

In this example, the domain of A is 1 ... 5. Notice, the index vector V can have repeat elements. We
analyze the running time for the sequential case and assume no special optimizations are performed
based on the contents of the index vector V. To perform the operation A[V] we need to compute
separately the addresses of all of those elements specified by V. Therefore, if there are m elements
in V then time 0(m) is required to retrieve the corresponding elements from A. The question
addressed for the remainder of Section 3.3 is whether or not this computation can be sped up
significantly using P processors.

3.3.1 Shared Memory Implementation of the Subscript Operator

Our primary interest is to implement APL on a non-shared memory model parallel computer,
however, we first focus on a shared memory model in order to isolate the computational aspects
of the problem. An SIMD shared memory model with P + 1 processors is assumed. Either the
SIMDAG model [Gol77] or the CREW-PRAM model [FW78] will suffice. We also assume the
model has a control processor that broadcasts the type of APL instruction to be executed to the
other processors. The P processors can read from a global memory in unit time.

Suppose the control processor's program has the "instruction" A[V] as it's next instruction. We
assume A has size n and V has size m and, A and V are both stored in global memory. If the length
of V is small then not much parallelism can be utilized. Therefore, we assume m > log P. Under
these assumptions, there are several ways to exploit parallelism in the subscripting problem. In what
follows we describe two algorithms in which we assume the control processor, when encountering a
subscript operator, broadcasts the name of the array to be subscripted and the name of the array
to use as a subscript. The length of an array is stored in global memory in a global symbol table.

10

Algorithm 3.3 Shared Memory Subscript Algorithm A

1. In parallel for all i, processor Pi uses V[i] as an index into A to obtain the V[i]th element of
A.

2. In parallel for all i, Pi stores this result in the appropriate location.

3. In parallel for all i, Pi repeats the above steps k times, where k is the smallest integer such
that L < k + 1.

Algorithm 3.4 Shared Memory Subscript Algorithm B

1. In parallel for all i, processor Pi computes k = to determine how many elements from
A it will obtain.

2. In parallel for all i, P obtains elements V[ik + i] ... V[i(k + 1) + i] of A.

3. In parallel for all i, Pi stores these results in the appropriate locations.

In Algorithm A processor Pi will probably not be accessing consecutive elements of A. However,
in Algorithm B if the indices of V are consecutive, then Pi can save additional time by incrementing
the address of the first element of A it computed by the size of an element of A, thus obtaining the
address of the second element of A, and so on. Notice, if V contains duplicate entries then both
algorithms may require concurrent reads.

How much speedup do these algorithms yield over the sequential case? Each of the P processors
can access one element of A at each step. Therefore, since we assumed m = IVI > log P a factor
of at least logP speedup is obtained. In cases where fVI > P a factor of O(P) speedup is achieved,
which is optimal using P processors.

The following example illustrates the theoretical speedups Algorithms A and B provide. Con-
sider the following sequence of APL instructions:

Example 3.6 A -- t1000
B- A[246... 1000]

Using a sequential computer, the second instruction would take roughly 500 steps. In the parallel
case, assuming 100 processors, the second instruction would take about 10 steps using either of
the shared memory algorithms described previously. In the next section our focus returns to the
non-shared memory implementation of the subscript operator.

3.3.2 Non-Shared Memory Implementation of Subscript Operator

Let's assume the control processor broadcasts the subscript instruction in the same manner as be-
fore. Several problems arise in trying to convert either shared memory algorithm into an algorithm
for the non-shared memory case. In particular, suppose processor Pi contains element V[j]. P may
not contain element A[V[j]] in which case large communication costs may be incurred in trying to
obtain this value. In general, it is not possible to keep these values together since the subscripting
operation pairs arbitrary sources and destinations; nevertheless, we may still be able to keep the
communication costs low enough to benefit from parallelism.

r,

Another problem that arises in converting Algorithms A and B to a non-shared memory model
is that both algorithms use concurrent reads. This again increases the communication costs in the
non-shared memory case. We contend that many uses of the subscript operator are to retrieve
values from a set of data without duplicating any of these values. There are other operators that
can be used for duplicating data items. For example, the APL replication operator [GR76] is
frequently used to expand data. Therefore, in the remainder of this paper it is assumed that the
indices in the index set V are distinct. In particular, this implies that the length of the index vector
is less than or equal to the length of the vector. Of course, if only a constant number of duplicates
occur in the index set, then our results would not be significantly affected.

The 4-connected mesh was chosen to implement the subscript operator on because of its sim-
plicity, although other parallel models (Sto70] [PV8i] would work at least as well. Suppose there
are P processors in the mesh, then arbitrary PE to PE communication requires time P-5 . In fact, if
all PE's are to send out messages and all messages have different destinations then to send out all
P messages requires only time O(P-5) using standard data flow techniques [UU84]. Let's assume
again that all arrays are stored in the mesh in row major order. Initially assume there is only one
element of the array stored per PE. The following algorithm shows how to obtain a factor of P
speedup for the APL subscript instruction B ,- A[V] when IV > p.5.

Algorithm 3.5 Non-Shared Memory Subscript Algorithm C

1. In parallel for all i, Pi sends P[i] a message saying A[V[i]] is the value of B[i]

2. In parallel for all i, Pvi] sends Pi the value of A[V[i]] which Pi stores as B[i].

Algorithm C is easily generalized to the case where each PE contains more than one element.
Suppose the PEs have k elements apiece, then Algorithm C is repeated k times, once for each
element. We call the modified version of Algorithm 3.5 Algorithm C'. Note, in Algorithm C' we
can no longer assume that the messages the PEs are sending out have distinct destinations. Thus,
potentially there will be multiple messages being sent to the same PE during one communication
phase. We discuss the expected and worst case behaviors of Algorithm C'.

We show that for suitable array sizes the "expected" speedup achieved by Algorithm C' is
significant. Let m = IVI and k = ['J. The sequential algorithm for performing the subscripting
instruction B - A[V] requires 0(m) steps. We break down our analysis into separate cases for
different values of k in the parallel case.

1. CASE 1 where k = 0(1).
Using a row major order data allocation scheme, each PE has only 0(1) elements. Since we
assumed the elements of V were distinct, using Algorithm C' to perform the subscripting
requires time O(P'5). This is based on the communication time required by the algorithm.
Note, there can be at most a constant number of messages colliding at any given PE during
one communication phase. The sequential algorithm requires O(P) time since we assumed
m = 0(kP), so a speedup by a factor of O(P 5s) is achieved.

2. CASE 2 where k is no longer bounded by a constant.
The following scenario describes the worst case behavior of Algorithm C'. Suppose m = P2

and V is such that at each step all P processors want to access the data in the same PE. The
communication that is required at each stage becomes O(P). Therefore, the running time of

12

Datasize Vax 8500 100 PEs 256 PEs 1024 PEs

256 10 9.2 6.8
512 40 20.9 14.5
1024 80 37.5 27.6 22.1
1536 109 61.5 44.1 46.1
2048 160 36.0 57.3 42.7
2560 210 121.1 70.0 68.2
3072 260 179.3 87.1 64.3
3584 290 205.3 102.6 98.5
4096 350 219.4 114.9 85.6

Table 6: Timings in milliseconds for the APL subscript operation

Algorithm C' is 0(p 2). This is the same to within a constant factor as the running time in
the sequential case. Therefore, in the worst case no speedup is achieved.

The number of collisions that occur during the communication phase of Algorithm C' depends
on the values in V and on how the data is allocated in the mesh. Case 2 shows that we cannot
expect a speedup of a factor of O(P-5) over the sequential algorithm by Algorithm C' in all cases but
we can probably expect more than a constant factor speedup in the average case. The simulation
results are shown in Table 6. Our experimental data supports this theoretical analysis.

In review, the assumptions made about the subscripting operation were as follows:

1. The index vector V contained unique entries or at least the number of message collisions
caused by duplicate entries during the communication phase of Algorithm C' was a constant.

2. When there were more than a constant number of data entries per PE, the values in V were
such that the number of collisions occurring during the communication phase of Algorithm
C' was small.

If these two assumptions hold for an "average" APL program then theoretically we can expect
to be able to achieve a significant speedup using parallelism for an average program. This is true
because the remaining parts of an average program seem to adapt well to parallelism. In the next
section details of the simulation are presented.

4 A Description of the Simulation

In the previous section described the algorithms we used in the simulation of the APL dyadic,
reduction, and subscript operators on a mesh connected computer. We presented Algorithm 3.1 for
the dyadic operator, Algorithm 3.2 for the reduction operator and a modified version of Algorithm
3.5 in section 3.3.2 for the subscript operator. In this section some simplifying assumptions used in
the simulation are described and the manner in which the timings from our simulation comparing
the APL operators implemented on a VAX 8500 to those implemented on the simulated mesh are
discussed.

13

As mentioned previously, all APL arrays are assumed to be stored in row major order. We i
simulated the mesh computer by a sequential program written in the C programming language
[KR78]. When we ran the simulations to obtain "parallel" timings, we took the total running
time of the executing sequential program and divided it by the number of processors used for that
particular simulation. For cases in which all processors were "active" at all steps, this estimate
gives a good estimate of the actual parallel time. For cases in which some PEs were idle; of course.
an overly optimistic parallel running time is computed.

All simulations were conducted on a VAX 8500. The version of APL we compared the simulation
results to also ran on a VAX 8500 and was written in C. The version of APL used was originally
written by K. Thompson at Bell Labs. The version we compared against was Purdue/EE's APL
written in part by J. Bruner and A. Reeves. Since our simulations were performed on the VAX,
this meant that the processors in the mesh were also VAXes. Of course, the processors need not
have been full blown VAXes but for our purposes the PEs were assumed to be of the same speed
as a VAX 8500 for the operations simulated.

One additional note about the simulation was that we did not assign an explicit cost for mes-
sage passing. In the simulation a program's communication basically amounts to an assignment
statement. This, of course, is unrealistic since communication cost in a large mesh would amount to
more than this. However, if the actual message passing cost for the mesh is a small constant factor
than the results are still valid. Since the communication patterns in the mesh are fairly predictable
and regular, shifting the data curves slightly to the right by a constant factor would take into
account this communication cost. In addition, for the dyadic operator there is no communication
cost incurred so the results are valid; and furthermore, for the reduction operator there are only
two "global" communication phases.

4.1 Dyadic Simulation

The timings obtained for the dyadic simulation are shown in Table 4. The results were plotted
and the graph is shown in Figure 2. The following sequence of APL instructions was executed by
the simulation program and by Purdue/EE APL.

Example 4.1 A -tx

C-A+B

Timings were obtained for the third step. The values for x varied from 256 up to 4096. We
varied the number of processors in the mesh from 100 up to 1024. Thus, for example in Table 4
the entry 31 corresponding to 2048 and 100 means that under our assumptions on a mesh with 100
PEs and with arrays A and B of size 2048 the instruction C - A + B, took 31 milliseconds in
parallel. The same instruction took 80 milliseconds on the VAX.

4.2 Reduction Simulation

The timing obtained for the reduction simulation are shown in Table 5. The results were plotted
and the graph is shown in Figure 3. The following sequence of APL instructions was executed by
the simulation program and by Purdue/EE APL.

14

4096 -
3840 1 °

3584 7 JO

3328 - f

3072 - I

2816 o

2560 - A

2304 o

2048 - b

. 1792 -o 0 -o 100 PEs
• - - -A 256 PEs

1536 - m- -- 1 1024 PEs

S1280 4 Vax 8500

: 1024 -

768 "

512 "

256 "

0 * ' p ' p 5 I P 5 , 5 5 I p

-20 0 20 40 60 80 100 1t0 140 160 180 200 220 240 260 280

Time in milliseconds.

Figure 2: Time versus "data size" for the APL dyadic operation

Example 4.2 A ix
B- +/A

Timings were obtained for the reduction instruction in a manner similar to that as described
for the dyadic operation.

4.3 Subscript Simulation

The timings obtained for the subscript simulation are shown in Table 6. The results were plotted

and the graph is shown in Figure 4. The following sequence of APL instructions was executed by
the simulation program and by Purdue/EE APL.

Example 4.3 A - Lx

B-A
A -

C- B[A]

The timings were obtained for the fourth step.

15

3840 o

35s4 .-#

3328 -

3072 "

2816 o

2560 ,

2304 o

2048 -

1792 - 0- 0 100 PEs
A, - -- -A 256 PEs

C 1536 -. m.-- -- 1024 PEs
.C .."* -4 Vax 8500S1280 Va-0

S1024

768
°

512 -

256 "

0
-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time in milliseconds.

Figure 3: Time versus "data size" for the APL reduction operation

5 Analysis of Simulation Results

In this section the results presented in Section 4 are analyzed. First, we will focus on the dyadic
operator. Table 4 shows the timings obtained for the dyadic operator and the plot for the data
is shown in Figure 2. The first thing to notice about Figure 2 is that meshes of dimension 10,
16 and 32 did obtain speedups over the VAX. The speedups obtained for the mesh with 100 PEs
for different data sizes were about a factor of 3 over the VAX; the speedups obtained for the mesh
with 256 PEs were about a factor of 4 over the VAX; the speedups obtained for the mesh with 1024
PEs were about a factor of 30 over the VAX. Notice, that in going from 100 PEs to 1024 PEs the
speedups achieved were increased by about a factor of 10. Although the observed speedups were
not as great as expected, the speedups achieved for larger size meshes seemed to be about the order
of the dimension of the mesh.

Table 5 shows the timings obtained for the reduction operator and the plot for the data is ,f

shown in Figure 3. As with the dyadic operator the first thing to note about Figure 3 is that
speedups over the VAX were obtained. In fact, the speedups obtained for the reduction operator
are slightly better than those obtained for the dyadic operator. For large enough meshes with large
data arrays, the communication cost needed to perform the reduction operator would become great .

enough so that the reduction operation would require more time than the dyadic operator. The

16

.............

4096p

3840 I /
I I *.

3584
I/

3328 / ,°
3072 o

I o*

2816 o

2560 -"

2304

2048

1792 / O- -- O 10 PEs2 72 /*
1536 -.-. -A 256 PEs
.15--3- 1024 PEs

N 1280 / Vax 8500

3 1024 -*
768 ,/

512 -

256

0 1 5 ' ,
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Time in miliiseconds.

Figure 4: Time versus "data size" for the APL subscript operation

speedups obtained for the mesh with 100 PEs for different data sizes were about a factor of 15 over
the VAX; the speedups obtained for the mesh with 256 PEs were about a factor of 40 over the
VAX; the speedups obtained for the mesh with 1024 PEs were also about a factor of 40 over the
VAX. The data sizes tested for the mesh with 1024 PEs were not really large enough to achieve
the full benefit of the Reduction Algorithm. However, since the cases with 100 PEs and 256 PEs
illustrate our point quite well we did not run the larger time consuming experiments for the case
of 1024 PEs. In addition, we attribute the zig-zagging back and forth of the timings for the case of
1024 PEs to the symbol table searches. Unsuccessful searches required more time to execute than
successful ones.

Table 6 shows the timings obtained for the subscript operator and the plot for the data is
shown in Figure 4. Figure 4 shows that for the various values of mesh sizes we obtained speedups
over the VAX in all cases. The speedups obtained for the mesh with 100 PEs were about a factor
of 1.5 over the VAX for different data sizes; the speedups obtained for the mesh with 256 PEs were
about a factor of 3 over the VAX; the speedups obtained for the mesh with 1024 PEs were about
a factor of 4 over the VAX. Note, the speedup estimate for the case of 1024 PEs was based on the
largest experiment. Since the large experiments required lots of computer resources, this limited
the size of the simulations. However, notice in going from a mesh of size 100 to a mesh of size 256
our timings were sped up by about a factor of 2.5. Therefore, it seems reasonable to conclude that

17

for large data sizes on the mesh with 1024 PEs that we could expect about a factor of 15 spee'dIp
over the VAX. Although a factor of 15 may not seem fike much for a program that requires onil
milliseconds to run, consider a. program that requires 15 hours to run on the VAX.

Since the APL reduction operator is monadic, the term "data size" has a different meaning than
for the dyadic plus operator and also for the subscript operator. We can think of the suIbscript
operator as having two arguments, the index vector and the subscript vector. We choose to represent
the data size for the dyadic operator as the length of one of the arrays to be operated on and for
the subscript operator we choose to use the size of the index vector.

For the experiments the times for the operators compared from least to most as follows: re-
duction, dyadic and subscript. Although the subscript operation was expected to take the greatest
amount of time, we did not expect the reduction operation to be faster than the dyadic operation.
However, there are two factors that probably account for this difference. As mentioned previously
the dyadic operator requires no global communication among processors in the mesh, whereas,
the reduction operator does. However. since we are basically charging the cost of an assignment
statement for our communications, the timings for the reduction operator are somewhat optimistic.
The other factor is that for the dyadic operator two values need to be looked up in the symbol
table for every one looked up in the reduction operation. This is because of the definition of data
size we adopted. Notice, also that in the sequential case the dyadic operation was slower than
the reduction operation. For very large mesh sizes though, the analysis and the trend of the data
indicates that the dyadic operation will eventually run faster than the reduction operation.

6 Conclusions and Further Research

The original goal in conducting this research was to determine whether or not speedups for a shared
memory model sequential language could be obtained by implementing the language on a non-
shared memory SIMD parallel computer. We focused on the language APL because of its inherent
parallelism and on the 4-connected mesh computer because of its simplicity. We implemented on a
simulated mesh the APL primitive scalar dyadic, reduction, and subscript operators, which studies r
[SW75 indicate comprise over 90% of "typical" APL programs. The timings obtained for the
operations all inlicated that the operations could be sped up using parallelism as the theoretical
analysis conducted indicated. "r.

Although only three APL operators were implemented, we implemented the three that comprise
a large percentage of most APL programs. In addition, using known techniques [Abr70] [Bre82]
in which one operator can be rewritten as some combination of other operators programs might
be further simplified. The subscript operator being one of the most general operators can serve to
rewrite many other operators. As further research, it would be useful to build a simulation program
that implemented all APL operators so that complete APL programs could be run. Our research
indicates that this would yield promising results.

The Amdahl's law analysis conducted in Section 2 indicated that one should not be overly
optimistic about "parallelizing" a sequential language. The simulation conducted seems to indicate
that we can speed up a majority of typical APL programs by more than a constant factor. Therefore,
additional processors in the parallel machine would translate into significant additional speedups.

The Saal and Weis [SW75] study conducted on APL programs was done statically. A statistic
that would be useful to obtain would be dynamic array size. If the dynamic operator usage percent-
ages were known and also the array sizes being operated on, then it would be possible to estimate

18

program performance in a parallel environment using our simulation results. We feel these results
would be significant and interesting.

Other avenues to pursue for further research would be to try and implement APL on an actual
mesh instead of doing a simulation on a sequential computer. Performing simulations on other
connection networks such as the Shuffle Exchange [Sto70] or the Cube Connected Cycles [PVS1]
might also yield some interesting results. For the simulations we ,ssumed the data was stored
in row major order, it would be interesting to test out other data allocation schemes as well. In
[Sch87] several data allocation schemes were tested for the n-cube.

References
S

[Abr70] P. Abrams. An APL Machine. Technical Report SLAC Report 114, Stanford Univer-
sity, 1970.

[AKPW83] J.R. A]!.,n, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control depen-
dencies to data dependencies. In Proceedings 10th ACM Symposium on the Principles
of Programming Languages, pages 177-189, ACM, 1983.

[Amd67] G.M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. In AFIPS Conference Proceedings, pages 483-485, AFIPS, 1967.

[Bea68] G. Barnes and et al. The ILLIAC IV computer. IEEE Trans. on Computers,
C(17):746-757, 1968.

[Bre82] N. Brenner. APL on a multiprocessor architecture. APL Quote Quad, 13(1):57-60,
1982.

[Bud84] T. Budd. An APL compiler for a vector processor. ACM Transactions on Programming
Languages and Systems, 6(3):297-313, July 1984.

[CBHH87] J. Cuny, D. Bailey, J. Hagerman, and A. Hough. Simple Simon: Testbed for Parallel
Programming Environments. Technical Report, University of Massachusetts, Amherst,
Massachusetts, 1987.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In ACM Symposium
on Theory of Computing, IEEE Computer Society, 1978.

[Gol77] L.M. Goldschlager. Synchronous Parallel Computation. Technical Report TR-114/77,

University of Toronto, 1977.

[GR761 L. Gilman and A. Rose. APL an Interactive Approach. Wiley, 1976.

[ive62] K. E. Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

[KKLW80] D.J. Kuck, R.Ht. Kuhn, B. Leasure, and M. Wolfe. The structure of an advanced vec-
torer for pipelined processors. In 4th International Computer Software and Application
Conference, pages 709-715, IEEE, 1980.

[KR78] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall, Inc., New
Jersey, 1978.

19

- - - - - - - - -- - -

[Ne187] P. A. Nelson. Parallel Programming Paradigms. Technical Report, University of Wash- S
ington. July 1987.

[PV81] F. Preparata and J. Vuillemin. The cube connected cycles: a versatile network for
parallel computation. CACM, 24(5):300-309, May 1981.

[Sch871 J. Schaad. Allocation Strategies for APL on the CHiP Computer. Technical Report 87-
03-06, University of Washington, March 1987.

[Sny84] Lawrence Snyder. Parallel programming and the poker programming environment.
Computer, 17(7):27-36, July 1984.

(StoT70 H. Stone. Parallel processing with the perfect shuffle. IEEE Trans. on Computers, 0
C-20(2):153-161, Febuary 1970.

[SW75] H. Saal and Z. Weis. Some properties of APL programs. APL '75 Conference Proceed-
ings (Pisa. Italy), :292-275, June 1975.

[U11841 J. Ullman. Computational Aspects of VLSI. CSP, 1984.

[Upf84] E. Upfal. Efficient schemes for parallel communication. JACM, 31(3):507-517, 1984.

20

L6

PhD-wiuniM

i40I

- - - - - - -

